The Use of Video Glasses in Pediatric Surgical Education

Julie Pauwels BA1,2, Evie Landry MD1,2, Michael Yong MD1,2, Neil Chada MBChB(Hons) MPHe BSc(Hons) FRCS 1,2

1 Division of Pediatric Otolaryngology-Head and Neck Surgery, BC Children’s Hospital, Vancouver, British Columbia, Canada
2University of British Columbia, Vancouver, British Columbia, Canada

Introduction

One of the most common challenges in surgical education for trainees is gaining practical experience through observing procedures in the operating room. Video glasses are new devices that offer the potential to project the primary surgeon’s exact view to learners in real-time, allowing for an enhanced operative experience. Momentum is recently building for the potential use of wearable technology in the field of clinical medicine (1-5). Subjective assessments in terms of ease of use and feasibility in clinical settings have also been documented (3,6). Regarding its application to medical education however, the published literature is limited. The objectives of this study are to explore whether viewing live feed from the video glasses showing the surgeon’s point of view has the potential to improve the operative experience for trainees in the operating room and to provide preliminary data, which can be used to direct future studies regarding the applications of video glasses in surgical education.

Materials

The video glasses chosen for this study were the Design for Vision, Inc. surgical loupes mounted with LED DayLite® & NanoCam®. The NanoCam® records video in 1080p Definition at a frame rate of 30 frames per second in 24 Bit Color. See Figure 1 for an example.

Methods

Subjects recruited for this study are medical trainees rotating through the Pediatric Otolaryngology Clinic at BC Children’s Hospital. Medical trainees include 20 medical students and 10 residents in the Division of Otolaryngology Residency Program at UBC. These trainees are randomly assigned to view either a tonsillectomy or adenoidectomy procedure, two common surgical procedures in Otolaryngology involving removal of soft tissue either at the back of the throat or the back of the nasal cavity, respectively. Subjects are then randomized to observe either the live feed from the video glasses on a monitor in the operating room first or the open procedure tableside first and then vice versa. After completing both observations, subjects complete a post-test questionnaire assessing their overall learning experience from observing the live feed from the video glasses, as compared to observing the live procedure tableside. See Figure 2: Post-test questionnaire.

Results

Six subjects have completed testing: 3 residents and 3 medical students. Preliminary analysis of the data show that on scale a from 0-100, from “Difficult” to “Easy”, subjects rated their overall learning experience with the video glasses as 78.6, compared to 52.5 during the open procedure. In rating the ability for the video glasses to realistically simulate an open procedure, all six participants rated the video glasses as either “Realistic” or “Very Realistic”.

Discussion

Although the results are very preliminary with only 6 subjects tested thus far, the video glasses show definite promise as a beneficial tool in teaching surgical skills to medical trainees. Anecdotally, use of the video glasses in the operating room was well received by participating trainees and the technology was easily set up by the operating surgeon. We encountered minimal issues with the quality of the video feed or delays to the surgical procedure when using the glasses.

Acknowledgments

We gratefully acknowledge the financial support for this project provided by UBC Vancouver students via the Teaching and Learning Enhancement Fund and by the Child and Family Research Institute Innovative and Acute Care Technologies Cluster (IACT).

Further Information

http://www.designsforvision.com

References